NASA

GODDARD SPACE FLIGHT CENTER

Laboratory for Astronomy & Solar Physics Infrared Astrophysics Branch - Code 685 Greenbelt, MD 20771

TO: SAFIRE OPTOMECHANICAL

FROM: DOMINIC BENFORD

SUBJECT: FABRY-PEROT DIAMETERS

DATE: 2000-08-02

FABRY-PEROT DIAMETERS

This is a quick note to remind myself of how to determine the requisite diameter ϕ_{FP} for a Fabry-Perot. In order to maintain spectral purity, the beam angles at the Fabry-Perot (assumed to be at a pupil stop) must fall within the central bulls-eye of the interference fringes. This constraint is:

$$\theta_{FP} = \sqrt{\frac{8}{R}}$$
 for a Fabry-Perot of resolution *R* and beam angle θ_{FP} .

To relate this to the telescope, since throughput is conserved, $\theta_{sky} \cdot \phi_{primary} = \theta_{FP} \cdot \phi_{FP}$. Substituting for SOFIA and using convenient units (θ_{sky} in arcseconds, ϕ_{FP} in mm) yields:

$$R \le \left(230 \frac{\phi_{FP}}{\theta_{sky}}\right)^2$$
 (n.b.: for SOFIA only; for the CSO, reduce R by a factor of 16).

FIGURE 1. Resolving power vs. aperture diameter for a variety of field sizes.